Formulas and Equations for Ideal Gas and Kinetic Theory of Gases

G.S. Tiwari

Ideal Gas Law

The ideal gas law relates the pressure (P), volume (V), and temperature (T) of an ideal gas.

$$PV = nRT \tag{1}$$

where:

- P = Pressure of the gas (in Pascals, Pa)
- V = Volume of the gas (in cubic meters, m³)
- n = Number of moles of the gas
- R = Universal gas constant (8.314 J/mol·K)
- T =Absolute temperature (in Kelvin, K)

Ideal Gas Law in Terms of Boltzmann Constant

The ideal gas law can also be expressed using the Boltzmann constant (k).

$$PV = NkT \tag{2}$$

where:

- N = Number of gas molecules
- $k = \text{Boltzmann constant} (1.38 \times 10^{-23} \,\text{J/K})$

Density of an Ideal Gas

The density (ρ) of an ideal gas can be derived from the ideal gas law.

$$PM = \rho RT \tag{3}$$

where:

- M = Molar mass of the gas (in kg/mol)
- ρ = Density of the gas (in kg/m³)

Mean Free Path

The mean free path (λ) is the average distance a gas molecule travels between collisions.

$$\lambda = \frac{1}{\sqrt{2\pi}d^2n}\tag{4}$$

where:

- d = Diameter of the gas molecule (in meters, m)
- n = Number density of molecules (in molecules/m³)

Speed of Gas Molecules

The speed of gas molecules can be described using the following formulas:

Root Mean Square Speed $(v_{\rm rms})$

$$v_{\rm rms} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{M}} \tag{5}$$

where:

- m =Mass of a single gas molecule (in kg)
- M = Molar mass of the gas (in kg/mol)

Average Speed (v_{avg})

$$v_{\rm avg} = \sqrt{\frac{8kT}{\pi m}} = \sqrt{\frac{8RT}{\pi M}} \tag{6}$$

Most Probable Speed (v_{mp})

$$v_{\rm mp} = \sqrt{\frac{2kT}{m}} = \sqrt{\frac{2RT}{M}} \tag{7}$$

Degree of Freedom

The degree of freedom (f) is the number of independent ways a molecule can store energy.

- For a monatomic gas: f = 3 (translational only)
- For a diatomic gas: f = 5 (3 translational + 2 rotational)
- For a polyatomic gas: f = 6 (3 translational + 3 rotational)

Molar Specific Heats

The molar specific heats at constant volume (C_V) and constant pressure (C_P) are related to the degree of freedom.

Molar Specific Heat at Constant Volume (C_V)

$$C_V = \frac{f}{2}R\tag{8}$$

Molar Specific Heat at Constant Pressure (C_P)

$$C_P = C_V + R = \left(\frac{f}{2} + 1\right)R\tag{9}$$

Ratio of Specific Heats (γ)

$$\gamma = \frac{C_P}{C_V} = 1 + \frac{2}{f} \tag{10}$$

Kinetic Energy of Gas Molecules

The average kinetic energy of a gas molecule is given by:

Kinetic Energy
$$=\frac{3}{2}kT$$
 (11)

Maxwell-Boltzmann Distribution

The Maxwell-Boltzmann distribution describes the distribution of speeds of gas molecules.

$$f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 e^{-\frac{mv^2}{2kT}}$$
(12)

where:

- f(v) = Probability density function
- v = Speed of the gas molecule